مدل ها و الگوریتم های داده کاوی |
آنها در یک بخش خاص قدرت دارند و برای استفاده از یکی از آنها باید بررسی های لازم در جهت انتخاب متناسبترین محصول توسط گروه متخصص در نظر گرفته شود.نکته مهم دیگر این است که در بین این الگوریتم ها و مدل ها ، بهترین وجود ندارد و با توجه به دادهها و کارایی مورد نظر باید مدل انتخاب گردد.
2-2-1 شبکههای عصبی[1]
هر شبکه عصبی شامل یک لایه ورودی[2]میباشد که هر گره در این لایه معادل یکی از متغیرهای پیشبینی میباشد. گرههای موجود در لایه میانی به تعدادی گره در لایه نهان[3]وصل میشوند. هر گره ورودی به همه گرههای لایه نهان وصل میشود.
گرههای موجود در لایه نهان میتوانند به گرههای یک لایه نهان دیگر وصل شوند یا میتوانند به لایه خروجی[4]وصل شوند.
لایه خروجی شامل یک یا چند متغیر خروجی می باشد
هر یال که بین نود هایX,Y میباشد دارای یک وزن است که با Wx,y نمایش داده میشود. این وزن ها در محاسبات لایههای میانی استفاده میشوند و طرز استفاده آنها به این صورت است که هر نود در لایههای میانی (لایههای غیر از لایه اول) دارای چند ورودی از چند یال مختلف میباشد که همانطور که گفته شد هر کدام یک وزن خاص دارند.
هر نود لایه میانی میزان هر ورودی را در وزن یال مربوطه آن ضرب میکند و حاصل این ضربها را با هم جمع میکند و سپس یک تابع از پیش تعیین شده (تابع فعالسازی) روی این حاصل اعمال میکند و نتیجه را به عنوان خروجی به نودهای لایه بعد میدهد.
وزن یالها پارامترهای ناشناختهای هستند که توسط تابع آموزش [5]و دادههای آموزشی که به سیستم داده میشود تعیین میگردند.
تعداد گرهها و تعداد لایههای نهان و نحوه وصل شدن گرهها به یکدیگر معماری(توپولوژی) شبکه عصبی را مشخص میکند.کاربر یا نرم افزاری که شبکهعصبی را طراحی میکند باید تعداد گرهها ، تعداد لایههای نهان ، تابع فعالسازی و محدودیتهای مربوط به وزن یالها را مشخص کند[3].
[1]Neural Networks
[2]Input Layer
[پنجشنبه 1398-12-08] [ 12:39:00 ق.ظ ]
|