پایان نامه پیش بینی میزان سپرده ها با استفاده از روش های خطی ARIMA و غیر خطی شبکه های عصبی مصنوعی و مقایسه این دو روش |
کلیات پژوهش
1.1 مقدمه
باتوجه به اینکه تجهیز منابع و جمعآوری وجوه اشخاص اولین هدف بانک بوده، سپردههای بانکی از دو لحاظ دارای اهمیت است اول قدرت وامدهی و تخصیص منابع بانک را افزایش داده و دوم اینکه وقتی مردم ترجیح دهند پول خود را نزد بانکها نگهداری نموده وکمتر برای خرج آن اقدام نمایند، از حجم پول در گردش کاسته شده که این امر خود موجب کاهش نرخ تورم و در نتیجه افزایش قدرت خرید مردم میگردد.
امروزه در جهان نیز اهمیت جذب منابع مالی آنقدر برای بانکها و ادامه فعالیتشان مهم و حیاتی است که رقابت بسیارشدیدی را در این زمینه بین آنها ایجاد نموده و ضرورت پیشبینی میزان تجهیز منابع در آینده را نمایان ساخته است. تاجایی که توانایی پیشبینی صحیح نتایج آتی، به خصوص جریانهای نقدی، اداره امور را در کاراترین شکل خود امکان پذیر میسازد و به اتخاذ تصمیمهای بهینه در زمینه عملیاتی، سرمایهگذاری و تامین مالی منجر میشود.
1.2 بیان مسئله
روشن است که پیشبینی[1] از ملزومات اصلی برای سیاستگذاری و برنامهریزی آینده است. مدیران بخشهای مختلف اقتصادی و بازرگانی، به دلیل وجود انبوه متغیرهای تاثیرگذار، ترجیح میدهند مکانیزمی را در اختیار داشته باشند که بتواند آنها را در امور تصمیمگیریشان یاری و مشاوره دهد(آرمسترانگ، 2001)[2]. برای موفقیت در دنیای متغیر امروز، تصمیمهای سازمانهای فعال در کسبوکار متکی به پیشبینیهای انجام شده با حداقل خطا است که در گرو داشتن یک سیستم پیشبینی مناسب است(آبراهام و لدالتر،1983)[3]. به همین دلیل، سعی در روآوردن به روشهایی در پیشبینی دارند که به واسطه آنها تخمینهایشان به واقعیت نزدیک و خطاهایشان بسیارکم باشد. ضمن اینکه برای برنامهریزی صحیح به عنوان یکی از مهمترین وظایف مدیریت، پیشبینی آنچه احتمالا درآینده به وقوع میپیوندد بسیارضروری است. سپردههای بانکهای تجاری و تخصصی مهمترین عامل در طرف عرضه پول در اقتصاد هستند. همچنین سپردهها جزء منابع اصلی بوده و عمده بدهیهای بانکها را نیز تشکیل میدهند. تجزیه و تحلیل میزان سپردهها، اجزای آنها، تغییرات، نرخ رشد و پیشبینی هر کدام از این عوامل برای مدیران بانک ها از اهمیت فوقالعادهای برخورداراست و در تصمیمگیری و برنامهریزی به آنها کمک می نماید. میزان، روند و چگونگی تغییرات انواع سپردهها هرکدام متغیری تصادفی بوده و در دنیای پر از نااطمینانی، تحت تـأثیر عوامل بیشماری قرار دارند و به سادگی نمیتوان آنها را پیشبینی کرد. با این وجود در اغلب رشتههای علمی توجه خاصی به مسأله پیشبینی شده و جزء لاینفک هرکدام از آنها است. تکنیکها و روشهایی نیز برای امر پیشبینی ارایه شده است و اگر نه به طور کامل اما تا حد بسیار زیادی میتوانند در امر پیشبینی به تصمیمگیران کمک نمایند.
مدیران بانکها علاقمندند بدانند که میزان کل سپردههای بانک تحت مدیریت آنها در زمان معینی در آینده چقدر خواهد بود؟
پیشبینی میزان سپردهها میتواند در امر برنامهریزی و تصمیمگیری به بانک سامان و مدیران شعب آن کمک نماید، بنابراین انجام یک مطالعه علمی با استفاده از تکنیکهای آماری و مدلهای شبکه عصبی مصنوعی میتواند حل مشکل را سادهتر نماید.
[جمعه 1399-01-08] [ 11:51:00 ب.ظ ]
|